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Oscillations of the FrCedericksz critical field 
in a superthin nematic layer in the vicinity of the 
second order nematic-smectic A phase transition 

by L. V. MIRANTSEV 
Institute for Problems of Mechanical Engineering, 

Academy of Sciences of Russia, St. Petersburg 199178, Russia 

(Received 25 January 1993; accepted 7 July 1993) 

In the present paper the Freedericksz transition in a superthin ( -  0.2 pm), 
homeotropically aligned liquid crystal layer between two identical boundary 
surfaces (solid walls) in the vicinity of the second order nematic-smectic A phase 
transition is considered. It is shown that the interference between the boundary 
surface-induced smectic density waves results in oscillation of the Freedericksz 
critical field as a function of nematic layer thickness, and the period of oscillation is 
equal to the molecular length 1. 

1. Introduction 
It is known that interaction between boundary surfaces and both the mesogenic 

and non-mesogenic molecules results in the appearance of surface layers with 
properties different from those of the bulk phase of a liquid. For example, the liquid- 
solid substrate interface not only enhances the orientational ordering in nematics and 
imposes some orientational order on the isotropic phase of liquids having a nematic 
phase [ 1-61, but also induces orientational ordering in non-mesomorphic liquids [7]. 
Furthermore, both the nematic-free surface and the nematic-solid substrate interface 
have an effect on the positional molecular order in liquids that leads to the appearance 
of a layered smectic A structure [l, 8-12]. 

The thin layer of liquid or nematic between two identical boundary surfaces (solid 
walls or free surfaces in the case of a freely suspended film) is particularly interesting. 
When two such surfaces are sufficiently close together, then interference between the 
liquid surface layers takes place and results in the appearance of extra phenomena. 
These phenomena have been clearly revealed by Horn et al. [l], from measurements of 
the forces between two molecularly smooth surfaces of mica separated by the 
nematogen 4-n-pentyl-4-cyanobiphenyl (5CB) in both the planar and homeotropic 
orientations. It has been found that there is a short-range force which oscillates, as a 
function of the nematic film thickness, between attraction and repulsion, and the period 
of oscillation is equal to the molecular length 1 and molecular diameter a for the 
homeotropic and planar orientations, respectively. The qualitative explanation of such 
a phenomenon was also given by Hornet al. 111. They attributed the oscillations of the 
force between the two mica surfaces to the solid wall-induced smectic ordering of 
molecules in the liquid crystal layer. A simple theoretical description of the oscillations 
in the thermodynamic properties of thin nematic layers between two identical 
boundary surfaces has been offered in [13]. In a mean field approximation, it has been 
shown that the interference between the boundary surface-induced smectic density 
waves results in oscillations of the smectic order parameter which give rise to the 
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800 L. V. Mirantsev 

oscillations in the free energy of the liquid crystal layer and the disjoining pressure 
acting on the boundary surfaces. 

It should be interesting to consider the effects of these oscillations on the 
electro(magnet0)-optical phenomena in a very thin, but nevertheless macroscopic 
nematic layer between two identical boundary surfaces. The effect of the boundary 
surface-induced smectic ordering on the Frtedericksz transition in a this homeotropi- 
cally aligned cell containing 4-n-octyl-4-cyanobiphenyl (8CB) near the second order 
nematic-smectic A (N-S,) transition has been studied by Rosenblatt [ 141. He observed 
the anomalous increase in the Freedericksz critical field and explained it in terms of 
smectic layering induced at the two boundary surfaces of the cell, so decreasing the 
effective thickness of the nematic region and thereby increasing the effective critical 
field. However, the thickness of Rosenblatt's cell, LF2.627 +0.015 pm was much larger 
than the smectic correlation length i which is of the order of 0.1 pm for the temperature 
interval investigated [14]. Since the correlation length ( is similar to the depth of the 
surface smectic ordering penetration into bulk liquid crystal, the interference between 
the boundary surface-induced smectic structures cannot occur in such a liquid crystal 
cell. 

The purpose of the present paper is to investigate theoretically the influence 
of the interference of the boundary surface-induced smectic density waves on the 
Freedericksz transition in a homeotropically aligned liquid crystal layer of a thickness 
L commensurable with the smectic correlation length i. The dependence of the 
Frtedericksz critical magnetic (electric) field on the nematic layer thickness and 
temperature is determined. It is shown that the value of the critical field must oscillate 
with the distance between two identical boundary surfaces and that the period of 
oscillation is equal to the molecular length 1. The numerical estimations performed for 
octylcyanobiphenyl(8CB) allow us to conclude that in the vicinity of the second order 
N-S, phase transition ( T -  TNs,-O.l K), this phenomenon can be observed in a 
superthin, but nevertheless macroscopic (- 0.2 pm) liquid crystal cell. 

2. The Freedericksz critical field in a thin homeotropically aligned liquid crystal layer 
between two identical boundary surfaces 

Let us consider the homeotropically aligned liquid crystal layer between two 
identical boundary surfaces (solid walls) in a transverse magnetic H (electric E) field. 
The temperature of the sample is assumed to be in the vicinity of the second order N-SA 
phase transition. For simplicity, let us suppose that orientational order in the liquid 
crystal layer is ideal (the long axes of all molecules are oriented parallel to the director n 
aligned along the z axis). This assumption is rcasonable enough because the 
temperatures of experimentally observed second order N--SA transitions are consider- 
ably lower than those of the isotropic-nematic (I-N) phase transitions [ 151. 

Taking into account the boundary surface-induced smectic A ordering, the free 
energy of deformation for the liquid crystal layer in the transverse magnetic field H can 
be written as [t4] 

where O is the director tilt angle relative to the z axis, K ,  and xn are the spatially uniform 
bend elastic constant and volume-susceptibility anisotropy, respectively; the term 
D(z)02 is the extra energy required to tilt the director by an angle O relative to the 
smectic layer normal, and L is the distance between the two identical boundary 
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FrCedericksz critical jield oscillations 80 1 

surfaces. When the sample is in a transverse electric field E, the term x,H202 in equation 
(1) must be replaced by (A444 E202,  where A& is the dielectric permittivity anisotropy. 
In the de Gennes model [16], D(z)-a2(z), where a(z) is the boundary surface-induced 
smectic order parameter. It has been shown in [13] that a(z)  in a thin homeotropically 
aligned nematic layer between two identical boundary surfaces is 

(2)  
where 

a O =  [ n C O / a ( T -  TNS~)<lR(L)> (3)  

x [l -exp(-2L/[)]-', (4) 

(5 )  

44 = QolexP ( - z/ i> + exp ( (z  - J5Y01, 

R(L) = [cos $ + exp (- L/i)  cos (2nL/1- $)I 

1 exp (- L/i)  sin (2nL/1 [ 1 + exp ( - L / i )  cos (2nL/1) ' 
$ = t n - l  

where n is the number of molecules per unit volume, Go is the constant defining the 
strength of interaction between the mesogenic molecules and the boundary surface, and 
u=constant. Then D(z)  can be written as 

D(z) = DoR2(L)[exp (- 2 z / i )  + exp (2(z - L)/[) + 2 exp (- 2L/i)] (6) 
where in a mean field approximation Do - [( T - TNSA) * i] - - (T  - TNsA)- When the 
nematic layer is sufficiently thick (L>> i), then exp ( -  L/[)-+O, R(L)+ 1, and D(z)  moves 
to the expression used by Rosenblatt [14]. 

Now let us determine the Freedericksz critical field as a function of the layer 
thickness Land the temperature T. First of all, we should choose a suitable solution O(z) 
which is symmetrical about the centre of the layer ( z  = L/2) and satisfies the boundary 
conditions 

(here we neglect non-rigid anchoring effects). In addition, in the limiting case of a 'pure' 
nematic layer without any surface-induced smectic structures (D(z)  = 0), this solution 
must become the well-known expression 8(z)  = 8, sin ( n z / L )  describing the small 
deformation in a bend-configured nematic sample in the vicinity of the Freedericksz 
transition [ 171. The solution O(z) satisfying all the aforementioned conditions can be 
represented in the form 

e(z = 0) = e(z = L) = 0, (7) 

m (2m + l)n 

where a, are the coefficients to be found. Substituting the equation (8) into equation (1) 
we obtain the following expression for the deformation energy F: 
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where 

L. V. Mirantsev 

The Frtedericksz critical magnetic field H* can be determined from the equation with 
F = 0 which gives 

where 

A2R2(L)(5/L)(2rn + 1)2[ 1 - exp ( -  2L/5)] + I3 + n2(2rn + 1)2(1/L)23 9 

In order to determine the critical electric field (E*2)  we must replace xa in equation (13) 
by (Acl4n). Minimization of equation (13), with respect to the unknown coefficients a,, 
leads to the following: 

[Brn(i/L) + 2cm(i/L)am + n # m  1 ~ r n n ( < / ~ ) U n ] (  1 + n =  1 a:) 
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Frgedericksz critical field oscillations 803 

which allows us to determine all these coefficients and consequently the Frkedericksz 
critical field. 

Let us realize this procedure in the simplest way, restricting expression (8) to two 
first terms: 

e(z )  = oo[ sin (y ) + m1 sin (%)I. 
Then the Freedericksz critical field is given by 

where 

(C, - A,) - [(C, - A,)2 + B:] 
a1 = 

B ,  
2 

and 

are the magnetic and electric critical fields, respectively, in the ‘pure’ bend-configured 
nematic sample without any boundary surface-induced smectic structures. 

It should be useful to check the capability of equations (20) and (21) to  describe the 
results of a Freedericksz measurement performed by Rosenblatt [14]. As has been said 
above, the thickness L of Rosenblatt’s liquid crystal cell was much larger than the 
smectic correlation length i. In this case R(L)+l and the equations (14W17) can be 
considerably simplified: 

A ,  z 1 + A2.([/L), 

Bl = 6A2*({/L), 

Cl = 9[1 + A2.({/L)], 

(22) I 
and 

The main purpose of Rosenblatt’s paper [14] was to determine the temperature 
dependence of a quantity 0 such that 

@=L,H;/L,H&-l, (23) 
where H$ is the Frkedericksz critical magnetic field in a thick cell with 
L, = 76.2 + 0.3 pm and H a  is that in a thin cell with L, = 2.627 + 0.01 5 pm. Taking into 
account that in the thick cell the critical fieId is similar to that in the ‘pure’ nematic 
sample, we can find that 

@ = { [ A ,  + B,o~,+ Cla:]/(l +a:))”’ - 1. (24) 
The results of Rosenblatt’s measurements of @ are shown in figurel. Let us 
consider the first experimental point in this figure, corresponding to the temperature 
T = TNsA + 0.8 K. The quantity @, at this temperature, is equal to 0.01, and according to 
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[14], the ratio [ / L  is equal to about 9 x 
equation (24) can be neglected and 

Therefore the terms Blccl, C,cc:, and in 
is given by 

Q, z -$A2 * ([/I!,), (25) 

and hence 

CA2 ‘ ( [ / L ) 1 , = T ~ ~ A + n . 8 K ~ 0 0 . 0 2 .  

Since in a mean field approximation, in the vicinity of the second order N-SA 
transition Do-(T- TNSA)-’, “(T- TNsA)-1’2, and K,-(T- TNsA)-l’’ [17], the value 
I \ ’ - ( [ /L) - (T-  TNSA)-’ and we can write 

[A’ ‘([/l!d)]T=o’o2 x (0.8/(T- TNS,))’. (26) 
Substituting this relation in equations (22) and (24), we can calculate the quantity at 
any temperature in the vicinity of the second order N--SA phase transition for 8CB. The 
calculated temperature dependence of this value is also shown in figure 1. It is seen that 
equations (20) and (21) provide reasonable agreement with Rosenblatt’s experimental 
results. 

3. The oscillations of the Frkedericksz critical field with the distance between two 
identical boundary surfaces 

Now let us consider the case of a superthin liquid crystal layer of thickness L 
commensurable with the smectic correlation length [. In this case, the value R(L)# 1 
and oscillates with the distance L. According to 1141, at the temperature 
T= TNSA + 0.1 K, the correlation length [in 8CB is equal to about 0 1  pm. Let us take the 
layer thickness L to be about 0 2  pm (L/c = 2). Though such a liquid crystal layer is 
‘superthin’, it can be considered as a macroscopic sample because L is much larger than 
the molecular length 1 (L/lx 60-70). The magnitude of A* for 8CB at the temperature 
T= TNsA +0.1 K can also be determined from Rosenblatt’s experimental 

Figure 1. Temperature dependence of the quantity a. (*), experimental points [14]. 
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results [14]. Remembering that [A2.([/L)]T=TNSA+0 8Kz0.02 and [ / L z 9  x 
taking into account that in a mean field approximation A2 -(T- TNSA)-' 

and 
we find 

( A 2 ) T = T N s , + 0  I ~ C = ( ~ ~ ) T = T N S ~ + O . E K  x 8 l  5=50.3 

Substituting this value and the ratio L/(=2 into equations (14)-(16) and (20H21), we 
can calculate the dependence of the Frtedericksz critical field in a superthin liquid 
crystal layer when the layer thickness L changes from K1 to ( K +  1) 1 where K is an 
integer. This oscillatory dependence is shown in figure 2. The critical field has a 
maximum value H z a x  (E&J at  a distance L equal to an integral number of molecular 
lengths 1 ( L  = K1, L = ( K  + 1)l) and it has a minimum value at L = ( K  + 041. Thus the 
most important characteristic of macroscopic magneto(e1ectro)-optical phenomena 
oscillates with a period equal to the microscopic molecular length 1. 

A qualitative explanation of the results obtained can be presented as follows. When 
the distance between the boundary surfaces is equal to an integral number of smectic 
layer thicknesses ( L  = K1, ( K  + 1) 1,. . .), then the interference between the boundary 
surface-induced smectic density waves is constructive and the smectic ordering is 
enhanced. This enhancement of the boundary surface-induced smectic ordering gives 
rise to a growth in the Frtedericksz critical field. In the opposite case, (IF ( K  +0.5)1, the 
interference between the boundary surface-induced smectic density waves is destruc- 
tive and the smectic ordering grows weak and results in a decrease in the critical field. 

Finally, let us estimate numerically the magnitudes of the magnetic and electric 
Freedericksz critical fields for the bend configured sample of 8CB with thickness 
L = 0.2 pm at the temperature T= TNsA + 0.1 K. In 8CB, in the vicinity of the second 
order N-S, transition, the magnitude of the bend elastic constant K ,  is of the order of - 10-6dn [18]. Substituting this and a typical value of xa= 10-'CGSE [l5] into the 
expression for H,*, we obtain H t z 5  x lo5 G, and according to figure 2, H Z a x z  1.6 
x lo6 G and HZ," x 1.3 x lo6 G. Evidently such magnetic fields are not available now. 

_ _  
K K + 0.5 

L/ I 
K + l  

Figure 2. Oscillatory dependence of the FrCedericksz critical field for 8CB on the distance 
between the two identical boundary surfaces. T= TNsA + 0.1 K, L = 0.2 ,urn (L/[ zz 2). 
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806 FrPedericksz critical Jield oscillations 

However, 8CB is a strongly polar liquid crystal with A e z  10 [19] and this gives quite 
achievable magnitudes of critical electric fields, namely EX ~55.3 x 104V cm-l, 
E g a x z  1.74 x lo5 Vcm-', and E,$,,z~ 1.38 x lo5 V cm-'. These estimations allow us to 
hope for the possibility of experimental observation of the phenomenon under 
consideration in an electric field. 

In conclusion, let us discuss briefly some moot points in the above considerations. 
First, the equation (1) for the free energy of deformation in the liquid crystal layer in the 
tranverse magnetic field is obtained in the framework of a continuum model which 
neglects the structural details of molecular size. Is this model appropriate for the 
consideration of a superthin sample of thickness L- 0.2 pm? As stated above, though 
the liquid crystal layer under Consideration is superthin, its thickness L is much larger 
than the molecular length 1 (L/lx6&70) and it can be considered as macroscopic. 
Therefore the continuum model should be appropriate for the description of the 
deformations in such samples [20]. Secondly, in the determination of the value 
A*-( [ /L) ,  we use the temperature dependences of the elastic constant K ,  and the 
correlation length 5 in the framework of a mean field approximation. However, the 
experimental data often do not correspond to this very simple theory [ 181. We must 
note that the mean field approximation used here is the simplest approach to the 
phenomenon under consideration and its utilization would only give a result that is 
qualitatively right. 
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